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1 Notation:

Here we’ll define the terms used within the project and how they may relate to concepts
from the course.

1.1 legalPositions

These are the collection of coordinates C that are valid locations for Pacman or a ghost to
be at. Let’s call c any coordinate in legalPositions, i.e. c ∈ C.

1.2 beliefs

If we let the random variable G represent ghost’s location, then the beliefs represent the
probability of finding a ghost at any given coordinate c on the grid. In other words:

P (G = c) ≡ The probability a ghost can be found at position c

1.3 trueDistance

The trueDistance is the distance from Pacman to some other coordinate c.

trueDistance ≡ ManhattanDistance(Pacman, c)

1.4 noiseDistance

The noisyDistance is the reading Pacman gets from using his sensor. It’s supposed to give
us a distance reading to the nearest ghost. This sensor isn’t the best (i.e it’s noisy), so we
don’t trust it to tell us the trueDistance, but there’s probably some useful information
the reading can give us. Let’s denote observations with the random variable Y . When the
agent makes a single observation, we’ll denote that as Y = y, where y is the exact value just
observed.

1.5 emissionModel

This model represents how much we believe that we should be observing the noisyDistance
we just observed, given that we know the true distance to a ghost, trueDistance. In other
words, we have a conditional probability distribution of the form:

P (Y |X) ≡ P (noisyDistance|trueDistance)

In code, you will be given the emissionModel produced by the noisyDistance observation y.
This emissionModel will come in the form of a Counter, with keys being the trueDistances
and values being the corresponding probabilities.
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1.6 jail position

This is a special position on the grid, far, far away from Pacman. Captured ghosts end up
here. No sensor can sense a ghost in this position. When a ghost has been captured, the
belief that the ghost is anywhere but the jail cell must be 0%, and we must have 100% belief
that the ghost is in the jail position. If a ghost is not captured, the belief that the ghost is
in the jail position must be 0%.

Note: Only the ghost can ever be in the jail position.

2 Updating Beliefs with Observations

Let’s say our agent has just started playing in our game world. He hasn’t taken any ob-
servations with his sensor, and he currently believes that the ghost is equally likely to be
anywhere. In other words:

P (G = c) = α for every c ∈ C, where α =
1

size(C)
is some constant

Now, let’s say he gets one sensor reading. We can use that noisyDistance reading along
with our emissionModel and our existing beliefs to determine a new set of beliefs. If
we fix the previous beliefs table, we can iteratively build up a new one. This process can
be repeated every time Pacman makes an observation.

Remember: A coordinate c is not the same as the trueDistance from that coordinate
c to Pacman.

Hint: Think about how you can use product rule to capture the union of the ghost be-
ing at c, and the sensor reading a particular distance.

Hint: Multiple positions can have the same noisy distance, so it may be important to
normalize your values. util.Counters has a convenient function for this.

3 Updating Beliefs with Elapsing Time

This form of updating beliefs differs from the previous in that Pacman is not making ob-
servations with his noisy sensor anymore. Instead, he has some model that tells him all the
places that a ghost may move, given that the ghost was at some other known position. In
other words, if Pacman assumed that a ghost was at some coordinate c at the last time step
t, he can use getPositionDistribution to have a probability distribution of where that
same ghost may be at time (t + 1). If we let the random variable Gi denote the location of
the ghost at time i, we have:

P (Gt+1 = d|Gt = c) ≡ The probability of the ghost transitioning from c to d
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Remember, we don’t actually know where the ghost is, so we can’t assume P (Gt = c) =
100%. Think about how we may be able to use what we already believe about the ghost’s
location to help us.

4 Hunting Multiple Ghosts

Our beloved Pacman is but one ghost hunter, so when he’s tasked with hunting multiple
ghosts, he’s got to decide how he’s going to go about capturing all of them. In other words,
which actions he’ll take. One easy way to go about chasing down multiple ghosts (especially
in an environment where there isn’t certainty about their locations) is to just chase the
closest one first, then the next, and so on. This greedy approach involves three main steps:

1. Using the beliefs for each ghost, determine the single most probable location c that
each ghost may be at. Treat these as the true locations of the ghosts.

2. Identify which of these ghost Pacman is already closest to.

3. Pick the action that brings Pacman as close to that ghost as possible.

5 Particle Filtering

In this part of the assignment, we’ll switch it up a bit. Instead of using probability dis-
tributions as we had been using before, we will now use particles to represent the agent’s
understanding of where a ghost may be found.

5.1 Particles as votes

Particles are simply ”votes” that represent the true distribution rather than the probabilities
themselves. We can also convert between a belief distribution and particles at any time.

Imagine we have a bag of marbles of different colors:

• 95 blue

• 3 red

• 2 yellow

We can easily convert this to a distribution of colors:

• P (blue) = 95%

• P (red) = 3%

• P (yellow) = 2%
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The bag of marbles is analogous to the list of particles. Note how we can always go from
a distribution to particles if we know how many particles we want total, which is always a
given quantity.

Keep in mind that for each time step the most probable ghost position should have the
highest number of particles ”voting” for it. Some positions may get no votes at all.

5.2 Initializing Uniformly

Just like how we did in the exact inference sections, we want our agent to start the game
believing that every position is equally likely to contain a ghost. For particle filtering, that
means we should have an equal number of votes for each position.

6 Updating Particles with Observations

This is very similar to Section 2, in that we’re using observations (noisyDistance) to update
our beliefs of where the particles are. However, rather than a distribution called beliefs,
we want to use a list of particles to represent the distribution. Think of how using particles
may be different from having a prior explicitly of the form P (C = c).

Hint: You’ll want to build something that has a weight for every position the ghost may be
in. This can then be normalized to form a distribution. Lastly, you can work backwards
from a distribution to a list of particles by doing the reverse of what we did in Section 5.1.

Hint: There are lots of helper functions in util.py that can help with this portion. Take a
look at util.sample and util.nSample.

7 Updating Particles with Time

This will be analogous to Section 3, but with the key difference being the use of particles
again as opposed to a prior of the form P (C = c). One speed optimization here will be
to iterate over the key-value pairs of the newPosDist rather than going over all possible
legalPositions, checking which ones have a weight in newPosDist, and then factoring that
into your weighted representation before you convert that into your list of updated particles.

8 Joint Particle Filtering

Now our task has slightly changed. We’re going to use Particle Filtering with multiple
ghosts. These ghosts no longer behave independently of each other, so we cannot apply
separate Particle Filters for each of these ghosts. Instead, we will now have particle tuples
of the form:

(c1, c2, . . . ck)
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Where k is the number of ghosts, and ci represents some legalPosition, i.e ci ∈ C. There
are many possible tuples since they are the length k permutations of the legalPositions,
and the number of particles we consider may not be able to capture all of them.

8.1 Permutations

Suppose we have a 3 × 3 grid of legal positions, and we have k = 3 ghosts. The possible
particle tuples are all permutations of length k = 3 from 9 possible cells, which is equal to
9k = 93 = 729.

8.2 Creating Particles

Now we know that the particle tuples are simply length-k permutations of the legalPositions.
We can use itertools.permutations to create these permutations. Once we’ve done that,
we may notice that the number of permutations may be greater than the number of particles
we want, N . It would be naive to stick with the first N particle tuples since that may pick
out only tuples placing each ghost in the top-right corner of the grid, for example. A smarter
strategy would be to randomly shuffle the list of permutations, ensuring we’re initializing
particles randomly and not by some particular ordering.

8.3 Updating with Observations and Time

The mechanics of observeStage and elapseTime won’t change much from our previous
implementations. The key differences will be the need to do some additional book-keeping
to account for the fact that our particles are now tuples representing each ghost rather than
just a single ghost. Keep in mind that your implementation may need to resample for a
single ghost (i.e. a single index in the tuples). Lastly, you’ll need to account for some ghosts
being in jails while the remaining ghosts run freely.
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