Georgia
Tech|

®
| m— G

Generative Adversarial Networks

Benjamin Wilson and Muhammad Osama Sakhi
September 2, 2019

Georgla Institute of Technology

Table of contents

1. Motivation
2. Previous Work
3. Generative Adversarial Networks

4. Conclusion

Motivation

Discriminative Machine Learning Setup

- Estimate a conditional probability distribution function: P(Y|X)

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

+ How do we model P(X)?

Why Generative Models?

- Important exercise of manipulation high-dimensional
probability distributions

- Semi-Supervised Learning
- Generating realistic samples from some distribution

- Plenty of other examples; however, many came after the original
paper

Motivation

Previous Generative Models

- We'll focus on generative models that work via maximum
likelihood:

m
argemax H Pmodel(Xi: 0)
=1

9*

m
arggnax Z log Prodel(Xi; 0)
1=

Explicit Density Models

- Define an explicit density function, Pmoger(X; 6).
- Fully visible belief networks (FBVNS):
- X e R"

n
'Dmodel(x) — H 'Dmodel(Xi‘X% ---Xi—1)
=1

- Pros: Foundation of strong generative models (ex. WaveNet)

- Cons: Samples must be generated one at a time.

Explicit models requiring approximation

- Variational Methods: £(x; 0) < log Pmodel(X; 0)
- Variational Autoencoder (VAE)
- Pros: Strong control of latent space structure

- Cons: Not asymptotically consistent unless approximate
posterior Is perfect, low quality sampling

Explicit models requiring approximation

Figure 11: Samples drawn from a VAE trained on the CIFAR-10 dataset. Figure
reproduced from Kingma et al. (2016).

Explicit models requiring approximation

- Boltzmann Machines

© P(X) = 7 exp (—E(x,2))

Z=3, 5, exp (—E(x.2))

- Pros: Designed with regard to physical processes

- Cons: Markov chain approximation techniques have not scaled
to ImageNet like problems

Implicit density models

- Generative Adversarial Networks (GANS)

Taxonomy of Generative Models

Direct

Maximum Likelihood AN
O\ /

Explicit density Implicit density

-\ o

- : : Markov Chai
Tractable density ' Approximate density atkov alll

~Fully visible belief nets / \ GSN
“NADE

MADE Variational | Markov Chain

-PixelRNN Variational autoencoder Boltzmann machine
-Change of variables

models (nonlinear ICA)

10

Generative Adversarial Networks

Model Architecture

- Setup a game between a generator and a discriminator.

- The generator produces approximations of samples drawn from
Pyata, Which we call Pg.

- Discriminator is given X ~ P and X ~ Pgqq. FOr both samples, it
tries to determine whether they were sampled from Pygtq.

1

Model Architecture

’ .
GAN’s Architecture
X
Differentiable module
Realworld ——= Sample
images % Real D(x)
G Discriminator . E
= Z . 7
L G(2)
g O Fake D(G(z))
s | Generator | Sample
c
10
c
3
8

p Differentiable module

« Zissome random noise (Gaussian/Uniform).
» Z can be thought as the latent representation of the image.

12

Model Architecture

Training Discriminator

Realworld ——

images Real
- - - . F
Discriminator . 9
w
Fake

Generator (——

8

Backprop error to
update discriminator
weights

Latent random variable
QOO

13

Model Architecture

Training Generator

Real

Discriminator .
/ ii Fake

Backprop error to
update generator
weights

O
$S07

Generator ——+ Sample
-

Latent random variable
OO

14

Model Objective

min max V(D, G) = Ex~pyy,[log D(X)] + Eznp, [log(T — D(6(2))]

- Authors show both convergence and optimality under certain
assumptions using the above objective.

15

Model Objective

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used £ = 1, the least expensive option, in our
experiments.

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z*), ... 2"} from noise prior p,(2).
e Sample minibatch of m examples {xzV),... ")} from data generating distribution
pdala(w)-

e Update the discriminator by ascending its stochastic gradient:

Vo, -3 [log D () +10g (1- D (G (=)))].

1=1

end for
e Sample minibatch of m noise samples {2 ..., z(™)} from noise prior p,(2z).

s 4

e Update the generator by descending its stochastic gradient:

Vo, - S 10g (1- D (6 (2))).
1=1

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

16

Pros

- Context and Differentiating From Other Work: The authors
explain how their approach i1s a departure from existing
generative approaches since they do not use a DNN to obtain
the parameters that maximize the likelihood of the data and
then use those parameters to sample from a distribution.
Rather, they explain how the networks themselves, G and D, are
sufficient for producing results that, although are not
necessarily maximizing the likelihood, are still generating
samples that trick even the most optimal discriminator.

- [llustrations: Clear explanations and illustrations to show how
training an optimal discriminator, then an optimal generator
eventually results in both G and D being optimized (Ex: Fig 1).

17

Pros: Figure 1

...........
re~.

\!‘

-
]
oy
' Y
n"
‘f

. 70 IR

(a) (b) (c)

S

18

Pros Continued

- Sampling: The only time sampling is needed here is to produce
the vector z, which Is the only thing the generator G needs to
produce a synthetic sample x.

- Practical Guidelines: The paper specifies how training one
network too much without switching to training to the other

network can prevent the model from having sufficient diversity
to model py.

19

Pros Continued

- Limitations of GANs and Evaluation Metric: The authors
concede that adversarial networks represent only a subset of pq
distributions, yet still show great performance in practice. They
also concede that the Gaussian Parzen window approach has
limitations (i.e high variance, poor performance in
high-dimensional space), but that it at least shows that GANs
are competitive in the generative model space.

- Admitting Pros & Cons: The authors themselves highlight the
pros and cons of their model: GANs are computationally more
performant that other generative approaches, no Markov chains
needed, no Inference step Is needed during training

20

Pros: Figure 2

cons

- Instability during training with heavy reliance on
hyperparameter selection.

22

cons

- Instability during training with heavy reliance on
hyperparameter selection.

- Estimation of P4(x) Is required to evaluate density function.

23

cons

- Instability during training with heavy reliance on
hyperparameter selection.

- Estimation of P4(x) Is required to evaluate density function.

- Relies on high variance metric (Parzen log-likelihood estimates)
and qualitative samples.

24

cons

- Instability during training with heavy reliance on
hyperparameter selection.

- Estimation of P4(x) Is required to evaluate density function.

- Relies on high variance metric (Parzen log-likelihood estimates)
and qualitative samples.

- May not reach optimal solution

25

cons

- Instability during training with heavy reliance on
hyperparameter selection.

- Estimation of P4(x) Is required to evaluate density function.

- Relies on high variance metric (Parzen log-likelihood estimates)
and qualitative samples.

- May not reach optimal solution

- Mode collapse

26

Conclusion

Conclusion

Questions?

27

References |

1. https://media.nips.cc/Conferences/2016/Slides/6202-Slides.pdf
2. https://arxiv.org/pdf/1701.00160.pdf

3. http://slazebni.cs.illinois.edu/spring17/lec11_gan.pdf

28

