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Motivation



Discriminative Machine Learning Setup

- Estimate a conditional probability distribution function: P(Y|X)

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

+ How do we model P(X)?



Why Generative Models?

- Important exercise of manipulation high-dimensional
probability distributions

- Semi-Supervised Learning
- Generating realistic samples from some distribution

- Plenty of other examples; however, many came after the original
paper



Motivation



Previous Generative Models

- We'll focus on generative models that work via maximum
likelihood:

m
argemax H Pmodel(Xi: 0)
=1

9*

m
arggnax Z log Prodel(Xi; 0)
1=



Explicit Density Models

- Define an explicit density function, Pmoger(X; 6).
- Fully visible belief networks (FBVNS):
- X e R"

n
'Dmodel(x) — H 'Dmodel(Xi‘X% ---Xi—1)
=1

- Pros: Foundation of strong generative models (ex. WaveNet)

- Cons: Samples must be generated one at a time.



Explicit models requiring approximation

- Variational Methods: £(x; 0) < log Pmodel(X; 0)
- Variational Autoencoder (VAE)
- Pros: Strong control of latent space structure

- Cons: Not asymptotically consistent unless approximate
posterior Is perfect, low quality sampling



Explicit models requiring approximation

Figure 11: Samples drawn from a VAE trained on the CIFAR-10 dataset. Figure
reproduced from Kingma et al. (2016).



Explicit models requiring approximation

- Boltzmann Machines

© P(X) = 7 exp (—E(x,2))

Z=3, 5, exp (—E(x.2))

- Pros: Designed with regard to physical processes

- Cons: Markov chain approximation techniques have not scaled
to ImageNet like problems



Implicit density models

- Generative Adversarial Networks (GANS)



Taxonomy of Generative Models
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Generative Adversarial Networks




Model Architecture

- Setup a game between a generator and a discriminator.

- The generator produces approximations of samples drawn from
Pyata, Which we call Pg.

- Discriminator is given X ~ P and X ~ Pgqq. FOr both samples, it
tries to determine whether they were sampled from Pygtq.
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Model Architecture

’ .
GAN’s Architecture
X
Differentiable module
Realworld ——= Sample
images % Real D(x)
G Discriminator . E
= Z . 7
L G(2)
g O Fake D(G(z))
s | Generator | Sample
c
10
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8

p Differentiable module

« Zissome random noise (Gaussian/Uniform).
» Z can be thought as the latent representation of the image.
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Model Architecture

Training Discriminator
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Model Architecture

Training Generator

Real

Discriminator .
/ ii Fake

Backprop error to
update generator
weights

O
$S07

Generator ——+ Sample
-

Latent random variable
OO

14



Model Objective

min max V(D, G) = Ex~pyy,[log D(X)] + Eznp, [log(T — D(6(2))]

- Authors show both convergence and optimality under certain
assumptions using the above objective.
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Model Objective

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used £ = 1, the least expensive option, in our
experiments.

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z*), ... 2"} from noise prior p,(2).
e Sample minibatch of m examples {xzV),... ")} from data generating distribution
pdala(w)-

e Update the discriminator by ascending its stochastic gradient:

Vo, -3 [log D () +10g (1- D (G (=)))].

1=1

end for
e Sample minibatch of m noise samples {2 ..., z(™)} from noise prior p,(2z).

s 4

e Update the generator by descending its stochastic gradient:

Vo, - S 10g (1- D (6 (2))).
1=1

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.
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Pros

- Context and Differentiating From Other Work: The authors
explain how their approach i1s a departure from existing
generative approaches since they do not use a DNN to obtain
the parameters that maximize the likelihood of the data and
then use those parameters to sample from a distribution.
Rather, they explain how the networks themselves, G and D, are
sufficient for producing results that, although are not
necessarily maximizing the likelihood, are still generating
samples that trick even the most optimal discriminator.

- [llustrations: Clear explanations and illustrations to show how
training an optimal discriminator, then an optimal generator
eventually results in both G and D being optimized (Ex: Fig 1).
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Pros: Figure 1
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Pros Continued

- Sampling: The only time sampling is needed here is to produce
the vector z, which Is the only thing the generator G needs to
produce a synthetic sample x.

- Practical Guidelines: The paper specifies how training one
network too much without switching to training to the other

network can prevent the model from having sufficient diversity
to model py.
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Pros Continued

- Limitations of GANs and Evaluation Metric: The authors
concede that adversarial networks represent only a subset of pq
distributions, yet still show great performance in practice. They
also concede that the Gaussian Parzen window approach has
limitations (i.e high variance, poor performance in
high-dimensional space), but that it at least shows that GANs
are competitive in the generative model space.

- Admitting Pros & Cons: The authors themselves highlight the
pros and cons of their model: GANs are computationally more
performant that other generative approaches, no Markov chains
needed, no Inference step Is needed during training
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Pros: Figure 2




cons

- Instability during training with heavy reliance on
hyperparameter selection.
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- Estimation of P4(x) Is required to evaluate density function.
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cons
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cons

- Instability during training with heavy reliance on
hyperparameter selection.

- Estimation of P4(x) Is required to evaluate density function.

- Relies on high variance metric (Parzen log-likelihood estimates)
and qualitative samples.

- May not reach optimal solution

- Mode collapse
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Conclusion




Conclusion

Questions?
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