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• Given a hand-drawn sketch.

• Retrieve the best matching
images from a dataset.
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Problem Statement: Detail

• We intend to solve unsupervised fine-grained
Sketch-Based Image Retrieval.

• This means, we retrieve specific instances of
entities, such as a plump bunny with pointy ears,
resting on its forelegs, and facing left.
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Problem Statement: More Detail

• Here, we can see a set of 3
retrievals.

• The first is correct, as the
appearance and pose are correct.

• In the second, the orientation is
similar, but not quite correct.

• In the third, the orientation and
pose are completely wrong.
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Related Work: Unsupervised Visual Representation Learning by
Context Prediction(1)

• Task: Context prediction by spatially relating two
random patches of an image.

• Motivation: Learn a feature embedding for images,
such that images which are visually similar would be
close in the embedding space.

• Method: Late fusion architecture using two AlexNet
style architectures, fused at fc6.
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Related Work: The Sketchy Database

• Task: Create a large collection of paired image-sketch data
for fine-grained sketch-based image retrieval.

• Motivation: Large and detailed corpus of individual entities
across domains, along with baseline benchmarks.
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Related Work: Cross-modal Subspace Learning
for fine-grained sketch-based image retrieval(4)

• Task: Introduce and compare a series of SOTA cross-domain subspace
learning methods.

• Motivation: Study the effectiveness of cross-modal matching methods for
image and text in SBIR.

• Conclusion: Demonstrate empirically that subspace learning can bridge the
image-sketch domain gap.
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Novelty

• Unsupervised: Most sketch-based image retrieval tasks
are often fully supervised, and specialized for the task.
Our approach aims to be an unsupervised approach to
reconciling the domain gap using cross-domain context
prediction.

• Cross-domain: Unlike the original paper by Doersch(1),
our context encoder is trained across domains to make
it learn domain-invariant features.

9



Novelty

• Unsupervised: Most sketch-based image retrieval tasks
are often fully supervised, and specialized for the task.
Our approach aims to be an unsupervised approach to
reconciling the domain gap using cross-domain context
prediction.

• Cross-domain: Unlike the original paper by Doersch(1),
our context encoder is trained across domains to make
it learn domain-invariant features.

9



Table of Contents

Problem Statement

Related Work

Approach

Experiments

Analysis

Conclusion

10



Approach: Assumptions

• Aligned, paired images available. For this, we compute canny edges of the
images in the PASCAL VOC dataset.

• Clustering image and sketch embeddings from a well-trained network will
result in well-formed discrete clusters that are domain agnostic.

• The model that performs well on cross domain context prediction will
perform well on the cross-domain image retrieval task.
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Pretext Task

• We divide the image into 4 regions, with uneven
spacing and jitter.

• We then extract two patches, one from each domain,
i.e. Images from Pascal, and their Canny edges.

• We finally compute the relative positioning of the
patches using the context encoder.
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Pretext Task: Architecture

• We pass the two patches through
the AlexNet model, with joint
features.

• The two outputs are then
concatenated into one joint
embedding, and passed through
more fully-connected layers.

• The relative 8-way position is
classified, and the errors are
backpropagated.
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Image Retrieval

• We first compute embeddings for the query
sketch using AlexNet trained on the pretext.

• We then perform a nearest neighbour search on
the embeddings from the dataset of images.

• We retrieve the nearest 5 and 10 images for
top-5 and top-10 scores.
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Contribution

• We extend the context-encoder concept across multiple domains.

• We use the obtained embeddings to perform unsupervised fine-grained
Sketch Based Image Retrieval.
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Datasets

1. PASCAL VOC 2012 (2): We use this dataset for training our model on the
pretext task.

2. Canny Edges of PASCAL VOC 2012: We generate Canny Edges of the PASCAL
VOC dataset using OpenCV’s implementation of the Canny Edge Detection
algorithm. We use this generated dataset for training on our pretext task.

3. Sketchy (3): A large-scale collection of image-sketch pairs collected using
Amazon’s Mechanical Turk. We use this dataset for fine-grained SBIR.
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Experiments

For all our experiments, we use the AlexNet architecture. We train each model for
26 epochs, with decreasing levels of ImageNet pretraining.

• Context Prediction in one domain: We perform this task on PASCAL images
and the generated Canny Edges individually.

• Context Prediction in two domains: We extract a patch each from a PASCAL
images and its corresponding edge image. The model is then trained to
position them spatially.

• Sketch Based Image Retrieval: We use our model trained on the pretext task
to extract features from the query sketch and perform a nearest neighbours
search on our dataset to find the matching image.

18



Experiments

For all our experiments, we use the AlexNet architecture. We train each model for
26 epochs, with decreasing levels of ImageNet pretraining.

• Context Prediction in one domain: We perform this task on PASCAL images
and the generated Canny Edges individually.

• Context Prediction in two domains: We extract a patch each from a PASCAL
images and its corresponding edge image. The model is then trained to
position them spatially.

• Sketch Based Image Retrieval: We use our model trained on the pretext task
to extract features from the query sketch and perform a nearest neighbours
search on our dataset to find the matching image.

18



Experiments

For all our experiments, we use the AlexNet architecture. We train each model for
26 epochs, with decreasing levels of ImageNet pretraining.

• Context Prediction in one domain: We perform this task on PASCAL images
and the generated Canny Edges individually.

• Context Prediction in two domains: We extract a patch each from a PASCAL
images and its corresponding edge image. The model is then trained to
position them spatially.

• Sketch Based Image Retrieval: We use our model trained on the pretext task
to extract features from the query sketch and perform a nearest neighbours
search on our dataset to find the matching image.

18



Experiments

For all our experiments, we use the AlexNet architecture. We train each model for
26 epochs, with decreasing levels of ImageNet pretraining.

• Context Prediction in one domain: We perform this task on PASCAL images
and the generated Canny Edges individually.

• Context Prediction in two domains: We extract a patch each from a PASCAL
images and its corresponding edge image. The model is then trained to
position them spatially.

• Sketch Based Image Retrieval: We use our model trained on the pretext task
to extract features from the query sketch and perform a nearest neighbours
search on our dataset to find the matching image.

18



Baselines

• Pretrained AlexNet: We compare performance on the Image Retrieval task
using AlexNet pre-trained on ImageNet with no additional training or
fine-tuning.

• Siamese Network + Triplet Loss: We compare our performance against the
supervised method defined in the Sketchy(3) paper.

• Li et. al.(5): We compare our scores with Li et. al.’s supervised method
(Deformable Part-based Model (DPM)), as done in the Sketchy(3).

• Spatial Pyramid: This model provides an improvement over traditional BOW
models and has been used as a baseline in many works.
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Metrics

We use two metrics to compare performance on the Image Retrieval task:

• top-5 accuracy
• top-10 accuracy

We quantify performance on the context prediction task using accuracy of relative
position prediction.
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Code & Implementation

• We used PyTorch to recreate Doersch’s (1) Context Prediction Network.
• We use nearest neighbours to retrieve images for a given sketch in Sketchy(3).
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Quantitative Results

Top 5 AlexNet Pretrained Ours* Li Sketchy SP
airplane 15.94 16.36 22.0 27.2 20.33
bicycle 6.68 8.79 11.67 21.5 13.83
car 10.90 11.99 18.83 15.8 14.5
cat 12.28 13.73 12.17 13.8 7.67
chair 17.49 13.30 20 21.7 20.33
cow 13.15 12.73 19.67 19.8 14
dog 16.04 13.15 9.5 21 6.83
horse 11.51 12.87 31.67 23.2 7.33
motorcycle 9.64 9.95 22.5 13 9
sheep 11.66 15.84 17.67 21 5
Mean 12.53 12.87 18.57 19.8 11.88

*We report results and analyses using the full pretrained + Batch Norm model. 22
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Ablations: Variables

We experiment with the following variables for our ablations.

• Pretraining: To accelerate our training, we initialize the model with
pretrained Imagenet weights. We vary the levels of pretraining to see how it
affects performance.

• BatchNorm: Doersch et. al.(1) use BatchNorm to improve their performance.
• Domains: We see how the context encoder method performs when trained
on each domain individually, as well as across domains.
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Ablations: Pretraining (Validation accuracy on Cross Domain

• NoPretrain has low
accuracy, and doesn’t
learn much.

• Full pretrain has a very
high validation accuracy.

• Resetting higher layers
corresponds to small 2-3%
drops in accuracy, which
shows that our model
needed lower-level
features to jumpstart
training.
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Ablations: Single Domain — Pascal Images

• This shows similar
characteristics to
cross-domain training.

• We can see how even the
lowest pretrained
convolution layer
massively helps our
training.
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Ablations: Single Domain — Canny Images

• This also shows similar
characteristics to
cross-domain training.

• However, since the
low-level features are
relatively simple, even
NoPretrain begins to learn
somewhat.
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Ablations: Cross Domain — BatchNorm

• Here, we can see that
using BatchNorm,
NoPretrain is able to
escape the saddle point.

• However, the model
performance is
significantly reduced with
higher levels of
pretraining.
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Visualisations: Qualitative Samples — Good Result (Results are drawn randomly)

• Here, we can see that the intended
image is present in the retrieved
samples.

• We can also see that another result
is also a bird in a similar pose.
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Visualisations: Qualitative Samples — Bad Result (Results are drawn randomly)

• Here, the intended class, i.e. the
violin is not present.

• The query results make some sense
as they are also long and thin
objects, kept vertically.
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Analysis: t-SNE — Sketchy (AlexNet Pretrained)

• Here, we can see there is a clear
separation between the
embeddings from the two domains.

• Corresponding classes are also
pretty far from each other.
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Analysis: t-SNE — Sketchy (Ours)

• Here, we can see the domains are
much less separated. We can also
see that in some classes, the
distance between corresponding
instances is getting lower.

• Overall, the results look better.
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Analysis: t-SNE — Pascal↔ Canny (AlexNet pretrained)

• Even here, there is a clear
separation between the domains.

• The distance between
corresponding points is high as well.
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Analysis: t-SNE — Pascal↔ Canny (Ours)

• This shows even better results, with
good mixing in the domains, and
close correspondences between
images and sketches for some
samples

• It also shows that some classes are
beginning to come closer. We think
it means that we may need more
training.
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Conclusion

• Our model performs better than the supervised classical baseline (Spatial
Pyramid), and slightly better than a pretrained AlexNet.

• It shows better domain invariance compared to the AlexNet baseline.
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Future Work

• Effects of further training on pretext task.

• Use context-encoder as pretraining for supervised image retreival models.
• Use more sophisticated feature extractors (like GoogLeNet or VGG) that more
recent SBIR methods use.
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