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Abstract—Analysis of social networks is challenging due to
the rapid changes of its members and their relationships. For
many cases it impractical to recompute the metric of interest,
therefore, streaming algorithms are used to reduce the total
runtime following modifications to the graph. Centrality is often
used for determining the relative importance of a vertex or edge
in a graph. The vertex Betweenness Centrality is the fraction of
shortest paths going through a vertex among all shortest paths
in the graph. Vertices with a high betweenness centrality are
usually key players in a social network or a bottleneck in a
communication network. Evaluating the betweenness centrality
for a graph G = (V,E) is computationally demanding and the
best known algorithm for unweighted graphs has an upper bound
time complexity of O(V 2 + V E). Consequently, it is desirable
to find a way to avoid a full re-computation of betweenness
centrality when a new edge is inserted into the graph. In this
work, we give a novel algorithm that reduces computation for the
insertion of an edge into the graph. This is the first algorithm for
the computation of betweenness centrality in a streaming graph.
While the upper bound time complexity of the new algorithm
is the same as the upper bound for the static graph algorithm,
we show significant speedups for both synthetic and real graphs.
For synthetic graphs the speedup varies depending on the type
of graph and the graph size. For synthetic graphs with 16384
vertices the average speedup is between 100X − 400X . For five
different real world collaboration networks the average speedup
per graph is in range of 36X − 148X .

Index Terms—graph algorithms; social networks;

I. INTRODUCTION

Betweenness centrality is computed for graphs G = (V,E)
where V represents the set of vertices and E represents the
set of links between the vertices. The graph can be directed
or undirected and weighted or unweighted.

A path between source vertex s ∈ V and the destina-
tion vertex t ∈ V is defined as the sequence of vertices
s, v1, v2, .., vk, t such that (vi, vi+1) ∈ E for the entire
sequence. The length of a path is the sum of the weights of all
the edges in the path. For an unweighted graph, the length of
the path is the number of edges in the sequence. The shortest
path between two vertices, also known as the geodesic, is the
sequence of vertices that has the smallest summed weight.
It is worth noting that there can be more than one shortest
path connecting any pair of vertices. This was formalized by
Freeman [16]. In his work, Freeman suggests comparing the
number of shortest paths going through a vertex v with the
total number of the shortest paths (including those that do not

go through v).
In this work we show how to compute betweenness central-

ity for unweighted streaming graphs. If an algorithm supports
both edge insertion (incremental) and edge deletion (decre-
mental) then the algorithm is fully dynamic. If the algorithm
supports one of these operations, it is partially dynamic. As
the algorithm that is presented in this paper supports only
insertions, it is an incremental algorithm. To the best of the
authors’ knowledge this is the first algorithm for incremental
streaming betweenness centrality.

Centrality is used for finding important vertices/edges in
graphs. In social networks the vertices refer to people/actors
and the edges refer to relationships, where the relationship is
dependent on the type of social network. In a communication
network, the vertices might be servers and the edges might be
physical connections between the servers. For email networks,
the vertices will be the senders/receivers and the edges refer
to emails sent between the sender and receiver.

Related Work

Betweenness centrality is applicable to many fields. Appli-
cations that use betweenness centrality as a building block
include finding communities within a graph representing in-
formation flow [22], detecting communities in social networks
[17], analyzing brain network [20], and deploying detection
devices in communication networks [8].

In [5], Brandes shows a way to compute betweenness cen-
trality using a dependency accumulation technique rather than
doing a pair-wise summation. This algorithm is considerably
faster than the pair-wise summation. In Section II we expand
on Brandes’s approach for computing betweenness centrality
as it is crucial for understanding our approach to computing
streaming betweenness centrality.

Madduri et al. [19] present the first parallel algorithm
for computing betweenness centrality. This algorithm uses
a two level hierarchy of parallelism to achieve fine-grain
parallelism. Edmonds et al [12] give a distributed algorithm
for betweenness centrality. Tan et al show several optimization
strategies for computing betweenness centrality on the IBM
Cyclops64 in [21].

In Bader [3], the authors suggest reducing the complexity
requirements of betweenness by computing an approximation.
This is done by selecting a subset of vertices and computing



betweenness centrality for these vertices alone. In their pa-
per, the authors show that the approximation can give good
results for artificial networks. In [19], [11] execution times
are presented for the computation of approximate betweenness
centrality for graphs with an edge count of half a billion.

In Buluç and Gilbert [7] the authors show a framework,
Combinatorial BLAS, for computing betweenness centrality
using algebraic computation. Using Combinatorial BLAS, they
show that the computation of betweenness centrality is scalable
and can be distributed to multiple cores.

Betweenness Centrality

We denote the number of shortest paths between two
vertices s and t using σs,t and the number of shortest paths
between two vertices s and t that go through v by σs,t(v).
It follows that betweenness centrality is computed as follows
[16]:

CB(v) =
∑
s6=t 6=v

σst(v)

σst
. (1)

Finding the shortest path from a single vertex (source) to
all the remaining vertices is known as the Single Source
Shortest Path (SSSP) problem. Finding the shortest paths from
all vertices to all vertices in the graph is known as the All
Pairs Shortest Path (APSP) problem. APSP can be solved by
running SSSP from every vertex in the graph. The complexity
of computing APSP using the Floyd-Warshall algorithm [15]
[23] is O(V 3). For a more detailed discussion on SSSP and
APSP the reader is referred to [10].

The remainder of the paper is organized as follows: In
Section II we show Brandes’s algorithm with an explanation
of the key stages and focus on the dependency accumulation
technique. In Section III the new streaming algorithm is
presented. We prove that the new algorithm gives the same
results as would a full re-computation and show that the
algorithm is deterministic. In Section IV we show empirical
speedups of the new algorithm versus doing a full recompute
on both synthetic and real networks. In Section V a brief
summary of the work will be given.

II. FASTER BETWEENNESS CENTRALITY

In [5], Brandes presents a fast algorithm for computing
betweenness centrality based on a dependency accumulation
technique which accesses the vertices in the reverse order
of the BFS (Breadth First Search) traversal. Brandes’s [5]
algorithm for faster betweenness centrality is key for under-
standing the work that will be presented in the sections ahead.
Therefore, we give a detailed explanation (without the formal
proofs) of his work. It is worth noting that the dependency
accumulation approach is faster than previous approaches that
required summing up all of the pair-wise dependencies.

The algorithm for computing betweenness centrality pre-
sented in [5] is made up of four stages, as shown in Algorithm
1. The first two stages, Stage 0 and Stage 1, are data structure
initialization stages, where Stage 0 is a global initialization
stage and Stage 1 is ’local’ initialization that is completed
once for each vertex in the graph.

Algorithm 1: The Betweenness centrality algorithm as
suggested in [5]. The pseudo-code is divided into 4 stages.

Stage 0 - global initialization
CB [r] ← 0, r ∈ V ;
for r ∈ V do

Stage 1 - local initialization
S ← empty stack; Q← empty queue;
P [w]← empty list, w ∈ V ;
σ[t]← 0, t ∈ V ; σ[r]← 1;
d[t]←∞, t ∈ V ; d[r]←∞;
enqueue r → Q;
Stage 2 - BFS traversal
while Q not empty do

dequeue v ← Q;
push v → S;
for all neighbor w of v do

// w found for the first time
if d[w] =∞ then

enqueuew → Q;
d[w]← d[v] + 1;

if d[w] = d[v] + 1 then
σ[w]← σ[w] + σ[v];
append v → P [w];

Stage 3 - dependency accumulation
δ[v] ← 0, v ∈ V ;
while S not empty do

pop w ← S;
for all v ∈ P [w] do

δ[v]← δ[v] + σ[v]
σ[w] (1 + δ[w]);

if w 6= r then
CB [w]← CB [w] + δ[w];

In Stage 0 the output of the algorithm, the betweenness
centrality score of each vertex is initialized to zero. Stages 1,
2, and 3 are executed for each vertex in the graph. Each vertex
is considered a root an iteration over all vertices.

In Stage 1, the data structures that will be used in Stages
2 and 3 are initialized. This includes a stack, queue, and
three additional arrays. The first array, σ, counts the number
of shortest paths from each vertex to the root of the current
shortest path tree, r. The second array, d, measures the distance
of each vertex from the root. As the graph is unweighted, this
is the minimum number of edges between the vertex and the
root. We refer to this distance as the level of the vertex in
the BFS tree. Initially the distances of all vertices from the
root are set to ∞. The third array, P , is an array of linked
lists. Each vertex v has a linked list P [v], that contains all
the vertices that precede v in the BFS traversal. These are the
parent vertices of v in the previous level.

Stage 2 and Stage 3 are the key components of the between-
ness centrality computation. Stage 2 is a BFS traversal from



a given root that finds the shortest path to all other vertices.
In this stage, each element is placed in a queue when it is
found. It is later placed in the stack when it is dequeued from
the queue. 1 As part of the BFS traversal the distance from
the root vertex, s, to each vertex is also computed. For each
vertex, v, found in the BFS traversal there is a list of parental
vertices that are all one hop closer to the root. Thus, all of v’s
shortest paths go through its parents and these are accumulated
in σ[v].

In Eq. (1), the following two notations are seen: σst(v) and
σst. The latter (denominator) refers to all the shortest path
between s and t. The first (numerator) refers to all the shortest
paths between s and t that go through vertex v. If there are
no paths between s and t that go through v then σst(v) = 0. 2

By setting s to be a specific vertex (i.e. the root of the tree) it
is possible to compute both numerator and denominator σt(v)
and σt using the BFS traversal for each root vertex s.

Stage 3 computes betweenness centrality using the de-
pendency accumulation technique of Brandes [5]. The pair-
dependency for a pair of vertices s, t is defined as follows:

δst(v) =
σst(v)

σst
. (2)

Using Eq. (2) with Eq. (1) changes the computation of
betweenness centrality based on the pair-dependency:

CB(v) =
∑
s6=t6=v

δst. (3)

In [5] the following relationship is shown and proven:

δs(v) =
∑

{w|v∈Ps(w)}

σsv
σsw

(1 + δs(w)). (4)

The immediate outcome of this is that it is no longer
necessary to sum all the pair-dependencies as they follow a
recursive relation. In addition to this, it is possible to compute
each of the δs(w), by computing the shortest path from the
root , s, to the rest of the graph using a single source shortest
path algorithm.

Complexity Analysis

The memory requirements for the stack, queue and the
arrays σ and d are O(V ) as the sizes of these data structures
are bound by the number of vertices in the graph V . The
memory needed by the array of linked lists is bound by the
number of edges in the graph O(E) as the maximum number
of parents a vertex has is bound by the number of edges it
has. The sum of all the parents is bound by the total number
of edges in the graph.

As each BFS traversal is computed independently, only a
single copy of these data structures needs to be maintained,

1For an array based implementation of the queue and the stack, it is
necessary to maintain only one of these data structures, as the order in which
the vertices are placed in the queue is the same as that of the stack. As
the queue (Stage 2) and stack (Stage 3), are not accessed for computational
purposes it is safe to implement this with one array and maintain additional
pointers.

2If there are no shortest paths to between s and t, σst = 0

which is O(V +E). The memory required by the array CB is
also bound by the number of vertices V . Therefore, the total
memory requirement of this algorithm is O(V + E).

The time complexity of BFS is O(V + E). The time
complexity of the dependency accumulation is also O(V +E)
as the maximal number of steps is bound by the number
of parents, O(E), and the vertices accessed, O(V ). As this
computation is computed once for each vertex, the time
complexity is O(V 2+V E). Given that in many cases E > V ,
this is simplified to O(V E).

III. STREAMING BETWEENNESS CENTRALITY

In this section we will present a novel algorithm for com-
puting betweenness centrality in streaming graphs. Streaming
graphs are graphs into which new edges are inserted over time.
We show that it is possible to avoid a full re-computation by
maintaining some additional data structures. We show that the
algorithm does only minimal re-computation. We show the
correctness of the algorithm and show that the algorithm is
exact and not an approximation.

Additional data structures will be used to store previously
computed values and will allow avoiding redundant computa-
tion. These structures will be explained further in this section.
Our initialization stages are different from Algorithm 1 as data
is maintained between iterations of the insertion rather than
thrown away with the completion of the computation as is
done in [5]. Following the presentation of the algorithm and
the data structures, a deeper complexity analysis of time and
space requirements of the algorithm and the data structure will
be given. In this work, we focused on unweighted graphs. For
simplicity, our proofs will be aimed for at undirected graphs;
however, they can be augmented for directed graphs.

A. BFS Tree Data Structure

A BFS tree data structure is maintained for each of vertex
in the graph. A BFS tree is the tree created following a BFS
traversal from a given root. As these are unweighted graphs,
it is possible to maintain the distance of each vertex from the
root using an array of size |V |. Consequently, at any given
time, it is possible to query the level of any vertex in any BFS
tree in O(1) time.

While maintaining this structure does indeed increases the
space complexity, it will reduce the practical computation
requirements and give significant speedups.

B. Edge Insertion

Given a new edge e = (u, v) in the graph, G = (V,E∪{e}),
the relative position of the edge will be checked in the different
BFS trees. For each of the BFS trees denoted Ts, before e
connects u and v, one of the following scenarios occurs: 3

1) |ds(u)− ds(v)| = 0 - both vertices are in the same level
of the tree prior to the addition. The new edge does not
create any shorter paths, meaning that in Ts there will

3For simplicity and without the loss of generality, assume that u is closer
to the root than v.



Figure 1. Insertion of edge e = (u, v) connects two vertices that are on the same level in the BFS tree of root s.
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Figure 2. Insertion of edge e = (u, v) connects two vertices that are in adjacent levels in BFS tree of root s. The new edge does not cause any vertex to
change its position in the given BFS tree.
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be no updates of betweenness centrality. This is denoted
in Fig. 1.

2) |ds(u)− ds(v)| = 1 - the vertices are in adjacent levels
prior to the addition. ds(v) = ds(u)+1. This is denoted
in Fig. 2.

3) |ds(u)− ds(v)| ≥ 2 - the vertices are not in adjacent
levels prior to the addition. ds(v) = ds(u) + β , β ≥ 2.
This is denoted in Fig. 3.

4) (|ds(u)− ds(v)| =∞)∧ (ds(v) < |V | ∨ ds(u) < |V |) -
the vertices do not have a path to each other prior to the
addition of the edge. For undirected graphs this means

that two components are about to be connected. This is
denoted in Fig. 4.

These scenarios will be explained in the following sub
sections.

C. Same Level Insertion

In this subsection we show that the insertion of an edge
between vertices in the same level of a give BFS tree,
as depicted in Fig. 1, does not require an any additional
computation.



Figure 3. Insertion of edge e = (u, v) connects two vertices that are not adjacent to each other in the BFS tree of root s. In the simplest case only one
vertex is moved (pulled up), v. For other scenarios an entire subtree moves as can be seen in (b).
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(b) After edge insertion. v has moved closer to the root of the tree. Consequently,
additional vertices might be pulled up.

Figure 4. Insertion of the edge e = (u, v) connects two connected components. The BFS tree of s is connected to vertex u and is not connected to vertex
v.
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(b) After edge insertion. Note the all the shortest paths between vertices in the
two connected components go through e.



Lemma 1. Given an edge e = (u, v) such that ds(u) = ds(v),
no shortest paths go through e.

Proof 1. Assume by contradiction that for some vertex w there
is a shortest path between s and w that goes through e. This
path is denoted by vertices p1, p2, ..., pu, pv, ..., pw. Obviously,
v has a path to s as well, this path is denoted by p̂1, p̂2, ..., pv .
By creating an alternate path p̂1, p̂2, ..., pv, ..., pw we have
created a shorter path in contradiction with the assumption.

Lemma 2. The BFS structure is maintained and betweenness
centrality is updated correctly when a new edge connects
vertices in the same level.

Proof 2. Following Lemma 1, no new shortest paths are
created; therefore, the BFS structure is maintained and there
is no change in the betweenness centrality in the given BFS
tree.

Consequently, for edges that connect vertices that are in the
same level of the BFS structure, no computation needs to be
done.

D. Adjacent Level Insertion

In this subsection we present the algorithm for inserting
a new edge between vertices that are in adjacent levels of a
given tree with root s, as is depicted in Fig. 2. We denote
uhigh = u and ulow = v for this scenario. The BFS tree of
s does not change due to the insertion. Prior to the insertion
d(ulow) = d(uhigh)+1. This is still correct after the insertion.
While new shorter paths have been created, the distance for all
the vertices in the tree stay the same. However, the number of
shortest paths going between the root and some of the vertices
will change.

The pseudo-code for the new algorithm can be found in
Algorithm 2. The justification for the pseudo code made will
be presented in the following Lemmas.

Lemma 3. Given vertex ulow, the only vertices that will have
new shortest paths from the root, s, are the vertices found in
the BFS subtree starting at ulow in s’s BFS tree. The BFS
traversal starting at ulow can only move down s’s BFS tree.

Definition 1. σ̂s(v) is the new number of shortest paths to v.

In Stage 1 of Algorithm 2 σ̂s(v) ← σs(v). After Stage 1,
σ̂s(v) is updated if there are new paths, otherwise it remains
unchanged. The number of new paths will be maintained in
the array dP , where dP [v] is the number of new shortest paths
to v.

Definition 2. δ̂s(v) is the new accumulative sum for vertex v.

In the beginning of Stage 3, δ̂s(v) is initialized to zero for
all vertices.

Proof 3. Assume by contradiction that some vertex w has
a shortest path to the root, s, through ulow and that w is
not found in a BFS traversal starting at v. Because w has
a shortest path to the root via ulow it has some ancestral

Algorithm 2: Insertion of a new edge in a specific BFS
tree where the vertices are in adjacent levels prior to the
insertion.

Stage 1 - local initilization
QBFS ← empty queue;
for level← 1 to V do

Q[level]← empty queue;

dP [v]← 0, v ∈ ∀V ;
t[v]← Not-Touched , v ∈ ∀V ;
σ̂[v]← σ[v], v ∈ ∀V ;
enqueue ulow → Q[d[ulow]];
enqueue ulow → QBFS ;
t[ulow]← Down;
dP [ulow]← σ[uhigh];
σ̂[ulow]← σ̂[ulow] + dP [ulow];
Stage 2 - BFS traversal starting at ulow
while Q not empty do

dequeue v ← Q;
for all neighbor w of v do

if d[w] = (d[v] + 1) then
if t[w] = Not-Touched then

enqueue w → QBFS ;
enqueue w → Q[d[w]];
t[w]← Down;
d[w]← d[v] + 1;
dP [w]← dP [v];

else
dP [w]← dP [w] + dP [v];

σ̂[w]← σ̂[w] + dP [v];

Stage 3 - modified dependency accumulation
ˆδ[v]← 0, v ∈ ∀V ; level← V ;

while level>0 do
while Q[level] not empty do

dequeue w ← Q[level];
for all v ∈ P [w] do

if t[v] =Not-Touched then
enqueue v → Q[level − 1];
t[v]← Up;
δ̂[v]← δ[v];

δ̂[v]← δ̂[v] + σ̂[v]
σ̂[w] (1 + δ̂[w]);

if t[v] = Up ∧(v 6= uhigh ∨ w 6= ulow) then
δ̂[v]← δ̂[v]− σ[v]

σ[w] (1 + δ[w]);

if w 6= r then
CB [w]← CB [w] + δ̂[w]− δ[w];

level← level − 1;

σ[v]← σ̂[v], v ∈ ∀V ;
for v ∈ V do

if t[v] 6= Not-Touched then
δ[v]← δ̂[v], v ∈ ∀V



path to ulow. However, this path will be found during the BFS
traversal in contradiction to the assumption.

Corollary 1. If the number of shortest paths from the root
to ulow has changed, the vertices that are affected from this
change are those in the BFS subtree beginning at ulow. All
vertices above ulow are not affected as they don’t have any
shortest paths to s via ulow.

Lemma 4. Given the newly inserted edge and that d[ulow] =
d[uhigh] + 1 prior to the insertion, the only vertices that will
have a change in the number of shortest paths to the root are
those found in the BFS subtree starting at v.

Proof 4. The insertion of the edge does not add any shortest
paths from the root to vertex uhigh. However, ulow has new
paths to the root through uhigh. Following Lemma 3 and
Corollary 1 it is clear that the only vertices that need to be
updated are those in the BFS traversal starting at ulow.

Corollary 2. If the number of shortest paths to the root has
changed for a vertex w then for all v ∈ P [w], δ[v] of vertex v
needs to be updated. We denote these changes using δ̂[v]

The immediate result of Corollary 2 is that any vertex that
is on an ancestral path from a vertex that has had a change
in its σ value will also have a change in its δ value. It is
apparent that there are vertices that are not in discovered in
the BFS traversal whose δ values need to be updated as one of
their children had an update in either its δ or σ value. These
vertices are found in the dependency accumulation using the
parent lists.

The stack in Algorithm 1 ensures a vertex is not accessed
until all vertices in the level below it have been accessed.
We note, that unlike the algorithm by Brandes which used a
stack for the dependency accumulation, we maintain a queue
for each level. This has the following benefits: 1) Allows
enqueueing newly discovered vertices (by way of the parent
lists) to the adjacent queue in the inverse traversal. This cannot
be done using the stack. 2) Ensures that all vertices in a level
are accessed before moving on to the next level as is required.

Computation of δ̂[v] is based on the computation of δ[v]
with one minor modification, which will be explained briefly.
This modification is that σ̂ is used instead of σ. As δ̂[v]
contains the new and correct value of the dependency accumu-
lation, δ[v] is no longer needed and should be removed from
the centrality value. Thus:

CB [v]← CB [v] + δ̂[v]− δ[v]. (5)

The difference in the computation of δ̂[v] versus δ[v] is for
the vertices that are found during the traversal up the tree. For
these vertices only partial recomputation of the dependency
accumulation might be needed as some of these vertices might
have adjacent (one level below) vertices that have not been
impacted by the insertion. For such vertices, δ̂[v] ← δ[v] is
set initially. Within the value of δ̂[v] are all the dependency
accumulations made due to vertices in the adjacent level with
v as a parent. These values need to be removed based on the

previous values of σ and δ as can be seen in:

δ̂[v]← δ̂[v]− σ[v]

σ[w]
(1 + δ[w]). (6)

All of the observations have been placed in the pseudo-code
of Algorithm 2.

Lemma 5. The BFS structure is maintained and betweenness
centrality is updated correctly when a newly inserted edge
connects vertices in adjacent levels.

Proof 5. In Lemmas 3 and 4 we show that the shortest path
count is maintained. As there are no vertices that move in
the BFS tree following the insertion, the BFS structure is
maintained. Based on Eq. (5) and Lemma 2 the betweeness
centrality metric is update correctly.

E. Non-Adjacent Level Insertion

This subsection presents the modifications needed for up-
dating the BFS tree for the insertion of a new edge. Similar
to the last section, we denote uhigh = u and ulow = v. In this
subsection we show how to make updates to the BFS when
the inserted edge connects vertices in non adjacent levels. An
example of such a tree can be seen in Fig. 3. Fig. 3 (a) shows
the BFS tree prior to the insertion. Fig. 3 (b) shows the BFS
tree after the insertion.

As can be seen, the BFS tree changes (at least in one
place) as the vertex ulow is pulled-up the tree due to the
distance between the vertices prior to the insertion. Additional
vertices might be pulled-up as well, unlike in the adjacent level
scenario.

Below we sketch the necessary steps needed for updating
the BFS tree, followed by an explanation of how to update
betweenness centrality. This subsection will be less formal
than the previous one.

Following the insertion of the new edge, e = (uhigh, ulow),
we know for a fact that the vertex ulow will move up the tree
and will be one level below uhigh. As a consequence of this
pull-up, additional vertices might be pulled-up as well. For all
neighbors of ulow we will check if a new shortest path has
been creating due to the pulling up of ulow.

For immediate neighbors of ulow, there are two obvious
options: they will be moved up, or they will stay as they are.
For both of these scenarios, they will be placed in a BFS-like
queue.

After the pull-up, all neighbors of vertices in the queue need
to be tested. This is an immediate consequence of the fact that
there are new shortest paths to some of the vertices. For all
vertices in the queue, except for ulow, there is a third scenario:
the neighboring vertex will stay in its place and will not be
placed in the queue as it is not affected from other pull-ups.

When the BFS-like stage has been completed, the depen-
dency accumulation begins. The difference between depen-
dency accumulation for this scenario and the Adjacent Level
scenario is that for some vertices that have stayed in their
level in the BFS tree, the number of neighbors they have in
the following level has been reduced. Using Eq. (6) fixes this.



F. Insertion Connects Two Components

The newly inserted edge (u, v) connects two different
connected components C1and C2, see Fig. 4. Assume that
u ∈ C1and v ∈ C2. As the new edge connects two different
connected components, it is safe to state that there are no ad-
ditional edges between any vertices (c1, c2) such that c1 ∈ C1

and c2 ∈ C2.
Without the loss of generality and for simplicity, consider

all the BFS trees of the vertices in C1. It will become apparent
that the same explanations holds for all the vertices of C2 as
well.

Given root s ∈ C1, no new shortest paths to other vertices
in C1 are created following the insertion of the edge. It is,
therefore, not necessary to begin the BFS traversal at s as
the BFS tree to all the vertices in C1 will remain unchanged.
Instead, it is possible to start the BFS traversal from vertex
v. Vertex v will be initialized in the following manner :
σ[v] ← σ[u], as all the paths between s and v go through
u. In subsection III-D, we show that the scenario explained
here is an instance of the adjacent level scenario.

Following the completion of the BFS traversal, the depen-
dency accumulation is computed all the way back to v.

At this point δ[u] ← δ[u] + δ[v] is modified as there are
new paths going through u. As δ[u] has been updated, it is
necessary to update all of u’s parents using the dependency
accumulation concept. This too is explained in subsection
III-D.

G. Complexity Analysis

In this subsection we discuss both the work and storage
complexity of the new algorithm. For each BFS tree, one of
the four scenarios occurs upon insertion. The upper bound
complexity for connecting components, adjacent level inser-
tion, and non-adjacent level insertion is similar to the one
given by Brandes [5], O(V +E). This includes both the BFS
traversal and the dependency accumulation which are similar
to the static graph version.

As there are V vertices, the upper bound on the complexity
of the insertion is O(V 2 + V E) similar to the one given by
Brandes. While the upper bounds of both algorithms is the
same, we will see in the next section that the new algorithm
offers a substantial speedup in practice.

As for the storage complexity, as it is necessary to maintain
the BFS trees, a total of O(V + E) memory is needed for
each tree. This includes the distance from the root, number of
shortest paths to the root and the parent lists for each vertex.
In addition to this, O(V + E) is used in the update process
(the updated data is no longer needed upon completion of the
reverse accumulation). The upper bound on the memory is
O(V 2 + V E).

In summary, we have shown an algorithm with a work
complexity of O(V 2+V E) and storage complexity of O(V 2+
V E).

IV. RESULTS

In this section we show speedups of the new streaming
algorithm against the static algorithm. The algorithm is tested
using three types of graph: 1) Erdös-Rènyi [13][14] random
graphs, 2) Recursive Matrix (R-MAT) [9] random graphs, and
3) real social networks taken from [18], [1]. For the simu-
lations we ran on an Intel i7-2600K quad core systems with
16GB of memory. The cores’ clock frequency is 3.4GHz. The
simulations use a single core as the algorithms are sequential.
The L2 and L3 caches are 256KB and 8MB respectively.

The Erdös-Rènyi (ER) model uses a uniform distribution
for selecting the edges that will appear in the graph. All edges
have the same probability of existing in the graph

R-MAT is a graph generator used to create synthetic scale-
free graphs that follow properties found in real-world net-
works. For simplicity, we present R-MAT using an adjacency
matrix. Unlike the ER generator, edges in R-MAT do not have
uniform probability of being created. Initially, the adjacency
matrix is empty, and edges are added one at a time. For
each newly inserted edge, the adjacency matrix is divided into
equal-size quadrants where each has a different probability of
being selected. One of the quadrants is selected using a random
number generator. This quadrant is recursively subdivided into
smaller equal-size quadrants from which the next random
selection is made. This process is repeated until each quadrant
contains only a single element in the adjacency matrix. The
last round randomly selects a single element and creates the
corresponding edge. The probabilities assigned to the quad-
rants are designated a, b, c, and d. If a = b = c = d = 0.25,
then RMAT generator will generate an ER graph.

In Albert et al. [2] the authors present the small-world
phenomena which states the distance between two vertices
in the graph is a small number of hops away. Barabasi et
al. [4] show that the edge distribution follows a power law.
In Broder et al. [6] the authors show that World Wide Web
(WWW) has one huge connected component that contains
90% of the vertices in the graph. The work of Leskovec et
al. [18] confirmed that many real world networks have these
properties.

A. Synthetic Graphs

In this subsection we present results of the new algorithm
on ER and R-MAT generated graphs. In our tests we created
graphs in which the vertex count is a power of 2. We denote
this power as the scale. The scales that are tested range from
10 to 14. An edge factor (average number of edges per vertex)
of 8 to 32 is checked for each scale size. For each scale and
edge factor, 100 different graphs are tested and timed. The
speedups in the figures are of the average times. The ordinate
denotes speedup and the abscissa denotes the edge factor.

As can be seen in Fig. IV (a), the speedups of the new
algorithm for random graphs are considerable despite the
same upper bound complexity. This is because redundant
computations are avoided for all the insertion scenarios.

In Fig. IV (b) the speedups for R-MAT graphs are pre-
sented. While the speedups for the R-MAT graph are not as
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(a) Speedup of the streaming algorithm for Erdös-Rènyi sparse graphs.
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(b) Speedup of the streaming algorithm for R-MAT sparse graphs.

Figure 5. Speedup of the new streaming algorithm versus doing a full recompute for sparse synthetic graphs.
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(a) Speedup of the streaming algorithm for Erdös-Rènyi dense graphs.
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(b) Speedup of the streaming algorithm for R-MAT dense graphs.

Figure 6. Speedup of the new streaming algorithm versus doing a full recompute for dense synthetic graphs.

considerable as those for ER graphs, it is worth noting that
R-MAT graphs have a different structure than ER and in many
cases are more challenging. Also, the variance in the speedups
between the different edge factors is significantly smaller for
R-MAT graphs.

For both ER and R-MAT graphs we measure the perfor-
mance for dense graph insertions as well. We use graphs with
density of 5% to 90% with intervals of 5%. The speedups
can be seen in Figure IV. Initially when the graphs are still
relatively sparse, the speedup of the new algorithm gradually
increases. At some point, the graph becomes better connected
such that more edges need to be traversed for both the BFS
and the dependency accumulation. From this point onwards,
the speedups gradually decrease. However, the densification

offers an additional benefit - the effective(average) diameter
decreases. The benefit from this is that for many of the
trees, no re-computation is needed as the newly inserted edge
connects vertices that are in the same level. For both the ER
graphs in Figure IV (a) and the R-MAT graphs in Figure IV
(b), when the graph density goes above 55%-60% the speedups
come down. However, the speedups stay in the 2-digit region
of 12X − 18X .

B. Real graph

For real social networks, we used five collaboration net-
works supplied by Leskovc et al. [18] and his software [1].
Using terminology defined in [18], the effective diameter is
defined as the 90th percentile distance of all the vertices.

The networks that were used are collaboration networks for



Table I
SPEEDUP OF STREAMING ALGORITHM ON REAL CITATION NETWORKS.

Collaboration network Vertices Edges Speedup
Astro-physics 18772 198080 148X
Condensed matter 23133 93468 91X
General relativity 5242 14490 40X
High energy physics 12008 118505 108X
High energy physics theory 9877 51970 36X

Arxiv in the following fields: astro-physics, condensed matter,
general relativity, high energy physics, and high energy physics
theory. The effective diameters of these collaboration networks
are 5.1, 6.6, 7.6, 5.8, and 7.5 (respectively). The diameter
(maximal distance) for these graphs is 14, 15, 17, 13, and
17 (respectively).

In our tests, we create the graph with all but 200 edges.
These 200 edges are inserted one at a time using the new
streaming algorithm. As with the synthetic graphs, we make
sure that the new edge is not connecting two separate compo-
nents.

The average speedup for the five collaboration networks can
be seen in Table I.

V. CONCLUSIONS

In this paper we present the first algorithm for computing
streaming betweenness centrality. The new algorithm avoids
computing betweenness centrality scores for vertices that have
no new paths going through them due to the insertion of
a new edge. The new algorithm has the same complexity
bounds as the static algorithm O(V 2 + V E); however, we
demonstrated considerable speedup for both random graphs
and for real-world networks. For synthetic random graphs the
speedup depends on both the type and size of random graph.
For random graphs with 16K vertices the average speedup is
between 100X−400X . For 5 different collaborations networks
the average speedup is in range of 36X − 148X

The new algorithm for betweenness centrality is not limited
to social networks and can be used on all types of graphs.
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